Find Out What Size Furnace Your Home Needs With This Q&A

Many homeowners will get lucky and go years without needing to replace a furnace. That should be the case if you buy a relatively new home since most furnaces are built to last 15-20 years if you maintain the equipment. 

But if your furnace is reaching the end of its life (or already ran out of steam) you’re about to learn more about furnaces than you ever thought you would. One of the first things you need to figure out is what size of furnace you need. 

What works for one house may not work for another even if it’s similarly sized and right next door. There are a lot of factors to consider when you’re balancing performance and energy efficiency. The silver lining is that the best furnace size can be determined by answering a few questions. 

How big is your home?

The single biggest factor for determining the right furnace size is the size of the home. The furnace has to generate enough heat to efficiently warm the home to a comfortable level. 

You can use the square footage of your home to calculate heating needs. By simply multiplying the square footage by the British thermal units per hour (BTUH) factor you determine what size is appropriate. So for a 2,000 square foot home that requires 30 BTUH per square foot you’d need a furnace with 60,000 BTUH capacity or higher.

GOOD TO KNOW

Furnaces are sized in increments of 20,000 BTUH. The higher the BTUH the larger the furnace is going to be. The majority of furnaces are between 60,000-120,000 BTUH.

Where do you live? 

The recommended heating factor (BTU per square foot) is based on where you live in the U.S. Below are the five U.S. regions and their BTU recommendations:

Zone 1 – 30-35 BTU per square foot (Miami, New Orleans, Houston)

Zone 2 – 35-40 BTU per square foot (Los Angeles, Atlanta, Little Rock)

Zone 3 – 40-45 BTU per square foot (Kansas, Missouri, Virginia)

Zone 4 – 45-50 BTU per square foot (Boston, Chicago, New York)

Zone 5 – 50-60 BTU per square foot (Minneapolis, Buffalo)

Some newer, energy efficient homes can actually stay warm with just 15 BTU per square foot. This is often the case in Zone 1 and Zone 2.

How many people are in your household?

The number of people has an impact on heating needs, but having more people in the home could be beneficial. People generate heat, so having a big family together under one roof could mean your furnace doesn’t have to work as hard.

How many rooms are in the home?

The layout and design of a home matters as well. One large, open room has different heating needs compared to several closed off rooms. Walls create heat loss, so homes with lots of rooms and long hallways will require more BTUH to heat. 

How good is the insulation in your home?

Insulation will affect both the size of the furnace and efficiency. If your home is well insulated you could probably get by with a 15 BTUH per square foot. But if the insulation is lacking you may need to bump it up to 35 BTUH. If you aren’t sure, check it out. It may be more cost effective overall to add insulation. 

Some people are surprised to find the age of the home is really only a factor in terms of its insulation. Newer homes tend to have a good amount of insulation using more efficient materials compared to older homes. 

Does your home have high ceilings?

The higher the ceilings are the more vertical space there is to heat. If your home has vaulted ceilings it’s a good idea to bump up the BTU per square foot measurement. For example, a homeowner in Los Angeles with 12 foot ceilings throughout their home may actually need 45 BTU per square foot rather than 35 BTU.

How many windows does your home have?

The more windows there are in the home the higher the heating factor is going to need to be to compensate for the heat loss. If your home has more windows than average you may need to increase the heating factor by 5-10 BTU per square foot.

Provider Power can supply reliable energy no matter what size your furnace is. Find and compare reliable fixed-rate energy plans in your area!

Brought to you by

Monthly Hot Tub Electrical Cost

At the end of a long day relaxing into a bubbling hot tub seems like you suddenly transported yourself to a vacation spot far away from the workweek, stress, and responsibilities of everyday life. How much would you pay to have this luxury right outside your door?

That’s a question a lot of people ask themselves when they consider getting a hot tub. There’s no denying that it’s going to be an investment up front and an ongoing expense. All that heat and water circulation requires a fair amount of energy. 

How much energy? Let’s find out! 

Hot Tub Considerations That Affect Electricity Consumption

The question of how much energy a hot tub uses doesn’t have a straightforward answer. There are many different factors at play that need to be considered if you want to get a more accurate estimate of the monthly cost to run a hot tub.

Heater

The heater inside the hot tub is the biggest energy hog. It can draw anywhere from 1,500 to 6,000 watts based on whether it’s a 120-volt or a 240-volt heater.

New hot tubs have a serious energy advantage. The heaters inside are much more efficient today than in years past. If you plan to keep a hot tub for a while it may end up being relatively the same cost or even cheaper to get a new model when energy use is factored in.

Size

The larger the hot tub is the more energy it will use because more water has to be heated. 

Frequency of Use

The more you use the hot tub the higher your monthly electric bill will be. When a hot tub isn’t being used it’s kind of in standby mode. The heater will kick on every so often to maintain the temperature. But when you’re using the hot tub the heater is running continuously. There’s also the pump that will be constantly running too.

Water Temperature

The higher the temperature is set the more energy the hot tub will use and the more expensive it will be to run.

Temperature Outside

The outdoor environment also makes a difference. The cooler it is outside the more energy is required to warm up the hot tub. The monthly expenses will end up being significantly higher in the northern part of the country compared to the southern regions simply due to colder weather.

Fit of the Cover

The better the hot tub cover fits the less energy you’ll need to keep it at the ideal temperature because the heat won’t escape and be wasted. Some people actually get custom covers made so that the fit is precise.

Insulation Around the Hot Tub

Like insulation in your home, insulation around a hot tub makes a huge difference in terms of energy efficiency. The better insulated a hot tub is the better it will hold in the heat when it’s not in use and keep the water temperature warm.

Cost Per Kilowatt-Hour

Another big factor that influences the monthly cost is how much you pay per kilowatt-hour. Two families can use hot tubs for the same amount of time each month but have dramatically different monthly costs due to the kilowatt-hour rate.

The Monthly Cost of Owning a Hot Tub

All of these variables make it very difficult to say exactly how much it costs a month to run a hot tub. There are calculators online that can help you get a better estimate based on big factors like location, hot tub size and kilowatt-hour rate.

Generally speaking, the monthly electric cost for a new hot tub is typically $10-$30. However, some models estimate the monthly electric use to be closer to $50, and the costs are usually higher in the winter months than the summer months.

In terms of actual electricity use, you can get an idea of this based on the heater and pump. Most hot tub heaters use 1,500 or 6,000 watts and the pump will draw around 1,500 more. That means hot tub machinery uses 3-7.5 kilowatt-hours (kWh) per hour of use. If you pay 15 cents a kWh it will cost $0.45-$1.13 an hour to use a hot tub.

One variable is whether or not you have a time-of-use plan. If so, the hot tub use can be timed so that it’s in use when electricity rates are lower or possibly even free.  

Want to find an electricity plan with a reasonable fixed rate that will make monthly costs more predictable? Check to see which Provider Power electricity plans are currently available in your area!

Brought to you by

Green Home Tips for the New Year

If you prefer that your energy comes from a renewable energy source, it’s safe to say you’re also interested in living as green as possible at home. The concept of going green or living green is always evolving because technology and innovation are giving us new ways to minimize our impact without completely giving up modern-day conveniences.

You’ve probably already started replacing all your old light bulbs with CFLs or LEDs and have already programmed your thermostat for optimal efficiency. Today, we’re covering new green home tips that are just now becoming more mainstream. Let’s see if there are some changes you can make to save more energy!

Use the Lagom Approach at Home

If you are committed to living a greener lifestyle that’s much simpler, then you may want to take the lagom approach in your home life. It’s a relatively new concept in the U.S., but it’s been around in Sweden for quite a while. 

The lagom approach focuses on finding contentment in simple, non-material things. In doing so you become more conscious of the waste you create and the amount of energy needed to support your lifestyle. The approach also encourages tracking and measuring energy consumption to become more mindful of how much you use.

The consciousness that comes from using the lagom approach at home can help you identify where you can be saving energy and how to make greener decisions in the future. 

Invest in the Smartest Home Products

Homes are getting smarter by the day. The dramatic increase in smart home products is a result of huge demand. One of the top reasons homeowners invest in smart products is because they can help you save energy. Some products even boast that they can pay for themselves in a matter of months. 

Books can be written and still not cover all of the new smart home products that were released just last year. But here are a few that we think are worth considering.

Smarter Smart Speakers

If you haven’t gotten an Amazon Echo or Google Nest smart speaker now is a good time. The speakers are more intuitive and better at recognizing voices than ever before. Plus, more and more smart device manufacturers are making their equipment smart speaker compatible. As a result, smart speakers can now act like a hub that allows you to put systems on a schedule and keep them optimized for the biggest energy savings.

Smart Outlets

One of the latest parts of the home to become smart are outlets. Smart outlets have been around for a little while but the new versions are more versatile and allow you to control more with schedules and remote control features. Now there are even outdoor WiFi smart plugs for your exterior. 

Countertop Smart Ovens

Refrigerators have been getting smarter for years, and now it’s the oven’s turn. But product developers aren’t just outfitting conventional ovens with smart features. One of the newest smart device trends is the countertop smart oven. It’s a great option for a tiny kitchen without an oven, but it’s still something to consider if you have a regular stove because it saves energy. With the Brava Oven, you can even watch your food cook with your smartphone.

Get More Technical When Selecting Green Home Products

These days consumers are smarter than ever, and they are much more aware. Many understand that products can be labeled as “green” or “all-natural” without actually being better for the planet. Luckily, there are now tools that consumers can use to gauge how green a house project, materials, or a product will be before buying. Here are a few to try:

EC3 Carbon Footprint Calculator

If you plan to build or renovate your home take the time to check out EC3’s carbon footprint calculator. It can be used to measure the carbon footprint of constructing a home as well as how much energy would be used by the home once it’s built or renovated. 

Product Data Sheets

Take your green shopping to the next level with product datasheets. Most manufacturers will provide product data sheets on their websites. In addition to information on how to use a product and the intended purposes, the product data sheet will tell you about the chemical makeup of the materials that are used to know if they are toxic.

New Low Emission Spray Foam Insulation

One of the most common green home tips is to increase the amount of insulation in your home, especially if areas like the attic are lacking it. It makes sense to want to use insulation with the highest rating for better energy savings. For that reason, many homeowners choose to use XPS rigid insulation or spray polyurethane foam (SPUF) insulation. 

People who are committed to having a green home have shied away from foam insulation even though it has a high insulating factor. Why? Because the emissions associated with foam insulation are very concerning. 

Manufacturers have taken note of consumer’s concerns and there are now low-emission foam insulation products. Instead of using hydrofluorocarbons that can release very harmful gases into the air, new foam insulation products are using hydro-fluoro olefins. You can reduce energy use year-round and worry less about what’s being released into the atmosphere. 

Intelligent Remote-Controlled Watering 

Water is one of the most precious resources on the planet. It’s so precious many cities across the country have instated lawn watering restrictions. If you want to keep your garden thriving and green up your grass without feeling bad about it consider the Rachio Smart Sprinkler Controller. It’s a high-tech robotic system that allows you to create a custom watering schedule so you stay within the regulations. But that’s not all. You can customize the watering based on geolocation, soil type, and more.  

Another way to decrease your family’s carbon footprint is to choose an energy plan that’s powered by renewable resources. At Provider Power, we offer fixed-rate green energy plans that make renewable power possible for more people. 

Check out Provider Power plans available in your area

Brought to you by

Blizzard vs Winter Storm: What’s the Difference

Storms are one of the most common reasons that the electricity gets knocked out in the winter. Frigid temperatures paired with ice and snow can be disastrous for power lines and transformers. They can also wreak havoc on your home.

No storm in the forecast is good, but it’s important to know the difference between types of winter storms so that you can properly prepare. In this post, we’re taking a closer look at winter storms and how they compare to blizzards.

Types of Winter Storms

It turns out winter storm is a blanket term for several types of storms that occur in the winter. There are four types of winter storms:

Snowstorm

Anytime rain turns into snow it’s considered a snowstorm. Snow forms when the air between the clouds and ground is 32°F or less. There are three types of snowstorms based on the amount of snowfall:

  • Snow Flurries – This is a light snowstorm with very little snow accumulation on the ground, if any.
  • Snow Showers – Storms that produce enough snow to accumulate on the ground are known as snow showers.
  • Snow Squalls – When gusts of wind are accompanied by significant snow accumulation it’s considered a snow squall. 

Ice Storm

When a storm involves ice formation it might be considered an ice storm. To be a full-fledged ice storm there must be ice accumulation on everything outside and it has to be at least a quarter of an inch thick. Be extremely careful during an ice storm. In these conditions, power lines can break free due to the weight of the ice. 

Lake Effect Storms

If you live near the Great Lakes you may have experienced a lake effect storm. This is when winds from the north blow moisture from the lakes up into the air causing heavy snow to fall in the southern and eastern regions around the lakes. 

Blizzards

A blizzard is a type of winter storm that tends to be more severe. In the next section, we’ll go into more detail about what makes a blizzard different than other types of winter storms.

What Turns a Winter Storm Into a Blizzard

Blizzards are the most severe type of winter storm. They are so serious the National Weather Service has a special set of winter storm warnings for blizzards. 

While other winter storms are identified by the amount of ice and snowfall they produce, blizzards are determined by how strong the winds are during the storm. A blizzard will have sustained winds of 35 miles per hour or more. 

A blizzard will also involve heavy snowfall and what’s known as blowing snow. Blowing snow is snow that is either falling or is loose on the ground and is being kicked up by the wind. As the snow drifts through the air it decreases visibility. During a blizzard, visibility is reduced to just a quarter mile or less. 

The hard-blowing wind and decreased visibility are what make blizzards so dangerous. These dangerous conditions last 3+ hours and leave massive amounts of snow on the ground.

Essential Steps for Winter Storm Preparation

Getting through a winter storm is all about preparation. The more prepared you are the less likely it is that your home will be damaged. Here are five things every homeowner should do to prepare for the winter storm season.

Know the NOAA Warning System

Familiarize yourself with the NOAA winter weather warning system so you know what different issuances mean. There are:

  • Winter Storm Watches
  • Blizzard Watches
  • Winter Weather Advisory
  • Freezing Rain Advisory
  • Winter Storm Warning
  • Ice Storm Warning
  • Blizzard Warning

Outfit Your Car and Home With Emergency Supplies

FEMA and other disaster relief agencies recommend always having a first aid kit at home and in your car. You’ll also need to keep an ice scraper, hand broom, small bag of sand, road flares, and traction mats, or tire chains in your vehicle. 

Winterize Your Home 

Winterizing your home will help mitigate the freezing temperatures outside, reduce the risk of burst pipes and decrease the likelihood of a tree branch falling on your roof. 

Winterize Your Vehicle

Your vehicle is vital during a winter storm because you may need to evacuate. Vehicle weatherization ensures your car can safely make it down the road when the temperature drops below freezing. 

Have the HVAC System Serviced

When winter storms are a real threat the last thing you want is to have the heat go out in your home. HVAC servicing from a professional assured that everything is in good working condition before a storm hits.

At Provider Power we’re here for you during the winter storm season with energy plans that are reliable. Find out if Provider Power energy plans are available in your area! 

Brought to you by

What Causes Condensation to Form and How to Stop It

You may have noticed that every winter there seems to be a condensation issue around the windows. All of a sudden your dry window is dripping wet for apparently no reason. Now water is puddling on the window sill and dripping down the wall in a wet mess.  

What causes condensation to form on windows? Is it an indicator of a bigger problem? And what can be done to stop it? Let’s find out!

What Causes Condensation

Condensation is a result of warm, humid air hitting a cold surface. When that happens the air turns to liquid because the quickly cooling warm air can’t hold the moisture. Condensation can also occur when humidity levels are simply too high inside.

Windows are the prime spot for condensation in the winter because the glass is cooled by direct contact with the outside air. Also, the water has nowhere to go on glass. It beads up making the condensation obvious.

Is Condensation a Problem?

Condensation isn’t something that you want to see for a few reasons. For starters, it creates a mess. But anytime moisture is involved it could lead to mold and mildew problems that are much more difficult to deal with. The health of family members can even be impacted if mold and mildew start to grow.

When condensation isn’t wiped up it can soak into porous surfaces. The moisture can eventually damage wood and fabric beyond repair. Homeowners are lucky if all they have to do is repaint to get rid of water stains. If the problem isn’t addressed eventually drywall can be damaged, wood can rot and structural weakness can occur.

An indirect problem with condensation is higher energy costs. In the morning, windows with condensation are fogged up. Instead of the sunlight coming through the window and helping warm your home, the heat is used to evaporate the condensation. 

The other problem with this is that when the condensation is evaporated the moisture goes back into the air. This makes humidity levels inside higher, which makes the condensation problem worse. 

If you see condensation it’s an indicator that you have a weak spot in the home’s insulating envelope. It’s also a sign there are humidity problems inside. 

How to Stop Condensation From Forming

Condensation is a problem that won’t go away on its own. If left unchecked, condensation can do serious damage. Plus, it can negatively impact your health if it causes mildew and mold to form. For those reasons, condensation should be addressed immediately.

Stop the condensation drip with these simple tips. 

Use a Dehumidifier

If high humidity levels are to blame for the condensation a dehumidifier can help. There is dehumidifying equipment that can be installed within the HVAC system, but the simpler and cheaper option is to use a portable dehumidifier. Use it in the room where you see condensation to see if it makes a difference.

LEARN MORE: Do Humidifiers Use a Lot of Electricity? 

Use Vents

Anytime you shower or when you are cooking, turn on the exhaust fan. It will help draw moist air out of the home to keep humidity levels low. 

Don’t Dry Clothes Inside

Even though it’s cold outside, don’t dry your clothes inside.  Doing so can release up to 5 pints of moisture into the air.

Look for Water Leaks

Water leaks in the home are another common moisture source that can raise humidity levels. Do a thorough check throughout the entire home to look for signs of a water leak. Pay careful attention to pipes that bring water into the house.

Depending on the issue at hand you may need to take more in-depth measures to control condensation. For example, if you have a basement and humidity is an issue there’s a good chance the basement needs to be insulated. If you take all of the standard measures to reduce humidity inside and there’s still a condensation problem you may need to call in a pro to locate the source of the problem. 
At Provider Power we can’t solve your humidity problems, but we can help you keep your home nice and warm this winter for a fixed rate. Check our selection of electricity plans in New Hampshire, Maine, and Massachusetts.

Brought to you by

Do Humidifiers Use a Lot of Electricity

When we’re cooped up inside with the heater blasting in the winter, the air inside can become uncomfortably dry. That’s about the time the humidifier comes out. 

The air definitely feels more comfortable, but will your wallet pay the price when the electricity bill comes? The Environmental Protection Agency (EPA) wondered the same thing. A few years ago the EPA released their residential humidifier scoping report. In it the agency noted humidifiers only account for 0.11% of overall electricity use. 

That’s a pretty small percentage, but keep in mind that is an average. There are a few things that affect how much electricity a humidifier uses starting with the type of humidifier you have.

Electricity Consumption of Different Types of Humidifiers

Exactly how much electricity a humidifier uses will largely depend on what type of humidifier you’re using. There are two categories of humidifiers: portable and whole house.

Portable Humidifier

The vast majority of humidifiers are portable. This simply means they are small standalone units that can be moved around from room to room. You’ll enjoy more flexibility, but the tradeoff with portable humidifiers is they treat a limited space. Very rarely a portable humidifier is powerful enough to treat a small home.

Portable humidifiers have a small tank of water that will need to be replaced. They work by plugging into a 120V electric outlet.

The options break down further to three different types of portable humidifiers: 

Ultrasonic

Energy Used: 44 kWh

Savings estimate for energy-efficient model: 11.8 kWh per year / $1.36 annual savings

An ultrasonic humidifier has a piezo-electric device inside that eliminates the need for heating. However, it does rely on a fan to push vapor out.

Cool Misting 

Energy Used: 80 kWh

Savings estimate for energy-efficient model: 36.2 kWh per year / $4.17 annual savings

Cool misting humidifiers are the most popular type. About half of the humidifiers in the U.S. are cool misting. This type of humidifier has an internal fan blowing water up to a diffuser that creates a mist.

Warm Misting

Energy Used: 220 kWh

Savings estimate for energy-efficient model: 80.1 kWh per year / $9.22 annual savings

A warm misting humidifier has a heating component within the reservoir that warms the water before releasing it as a mist.

Whole House Humidifier

A whole house humidifier is a complex system that requires professional installation. The humidifier is installed in the ductwork so that up to 6,000 square feet of space can be humidified using a humidistat. One cost consideration is that the filter for the humidifier must be changed every six months. 

There are three types of whole house humidifiers:

Bypass

Energy Used: 0

Savings estimate for energy-efficient model: N/A

Bypass humidifiers have a pad that is sprayed with water. The airflow from the HVAC system passes over the pad adding vapor to the air. Therefore, no extra power is required to run the humidifier, but you’ll only feel the effects when the HVAC system is on.

Fan-Powered

Energy Used: 108 kWh

Savings estimate for energy-efficient model: 15.2 kWh per year / $1.75 annual savings

A reservoir of water in the humidifier is exposed to airflow from the HVAC system, but there’s also a fan in the humidifier that will create airflow if the HVAC system isn’t running.

Steam

Energy Used: 1.915 kWh

Savings estimate for energy-efficient model: 426.7 kWh per year / $49.11 annual savings

A heating element heats a reservoir of water that evaporates. The vapor is sprayed into the airflow of the HVAC system.

The Setting You Use Matters Too

The next thing that can affect humidifier energy use is the settings that you use. Most humidifiers give you various power levels. Typically there is a high, medium and low setting as well as a way to create a relative humidity setting.

Setting the humidifier to high rather than low will make the appliance work harder and use more energy. It may be best to use the relative humidity setting if you have the option. That way the humidifier only runs when it’s needed.

How Humidifiers Help You Reduce Energy Use

Now for the really good news. A humidifier can actually help reduce energy use. When the humidity is just right (30-50% relative humidity) it feels more comfortable inside a home even if you don’t touch the thermostat. 

In the winter you may feel so comfortable that you keep the temperature a few degrees lower. When air is humidified it feels warmer. That’s why in the summer higher temperatures plus higher humidity can feel really uncomfortable.

Provider Power can help you keep your humidifier running year-round for a fixed rate. We’re an industry-leading electricity provider located throughout the northeast. Find available energy plans in Massachusetts, New Hampshire, and Maine.

Brought to you by

Standby Generators: What You Need to Know for Safety

We’ve all experienced a power outage and all of the inconveniences that go along with it. For some people, being without electricity for even an hour can actually be a health hazard. But if there’s a power outage from a natural disaster, storm or accident, a standby generator can be an invaluable energy source when you need it most.

Standby generators, also known as stationary generators, are designed to provide temporary power for appliances, lights and other essentials in a home. Most standby generators generate electricity by tapping into the natural gas line or using a whole-house propane tank. They will automatically come on and start providing electricity the moment the power goes out. 

A standby generator can be a lifesaver during a power outage, but it can also be a danger if it isn’t used properly. Here’s some helpful advice from the experts on how to safely use a standby generator. 

Safety Concerns Associated With Standby Generators

In general, standby generators are relatively safe. That said, they are still a complex piece of equipment that runs on gas and generates electricity. Because of this, there are four primary safety concerns associated with standby generators.

Carbon Monoxide

The biggest safety hazard to watch out for when using any kind of generator is carbon monoxide poisoning. Carbon monoxide is a toxic gas that is colorless and odorless. It’s produced any time gas is burned. If a person breathes in carbon monoxide it can be deadly. Carbon monoxide is also highly flammable and can create an explosion. 

Electric Shock

Any time you are dealing with equipment that produces electricity, electric shock is a possibility. Standby generators are built with weatherproof housing to safely operate out in the elements, but precautions should always be taken if it’s raining or the generator is wet. 

Fire

Like electric shock, fire is another safety hazard related to electricity. As noted above, carbon monoxide from the natural gas supply can pose a serious fire risk. 

Overloading

The other serious concern with using standby generators is overloading the unit. Overloading is when you exceed the load capacity for the generator. It can completely fry your standby generator as well as the appliances and equipment that are plugged in. You can find load capacity information for a generator in the owners manual. 

How to Safely Set Up a Standby Generator 

The power has suddenly gone out, and now it’s time to put your standby generator to use. Setting up a standby generator may seem straightforward, but there’s a bit more to it than simply plugging in a piece of equipment. To ensure the safety of everyone in the home, have the standby generator professionally installed following all of the best practices below.  

Read the  Owner’s Manual

Safe standby generator setup and operation starts with the owner’s manual. Read through the manual before the first use. Pay careful attention to the voltage warnings, operation directions and recommendations for use.

Placement: Outside of the House Away from Vents, Windows and Doors

The standby generator should always be set up outside of the home on a concrete pad. NEVER run a standby or portable generator indoors. The goal is to keep fumes and carbon monoxide from getting inside where it can become deadly. For that reason, a standby generator should be installed at least 5 feet away from all doors, windows and vents.

Size It Right: Avoid Overloads and Inadequate Power Supply

Choosing the right size standby generator is very important. You want a generator that can supply enough electricity to power your entire house without overloading the system. 

Before purchasing a generator, go through your home and add up the power requirements for all of the essential appliances, equipment and devices. Also include the wattage of all the lights you’ll want to use. To determine your power needs add up the watts for everything and divide it by volts to get the amps that are needed.

Watts ÷ Volts = Amps

Get a standby generator that produces more than the minimum amps needed. Generators are notorious for drawing excessive amounts of power when they are first turned on so make sure you allow for a bit of excess beyond your minimum needs. 

Connection: Choose the Between Natural Gas Supply Lines and Propane Tanks

If you have natural gas at your home, then you can choose to either connect into the gas line or get a generator that runs on a whole-house propane tank. One advantage of a standby generator that connects into the natural gas line is you don’t have to worry about switching out propane tanks. 

Power Cords: Keep Them Out of Water and Out of the Way

If the power was knocked out by a storm there may be puddles of rain on the ground. Make sure any power cords coming out of or going into the generator aren’t sitting on the ground where they may be in standing water. 

You can count on Provider Power to offer exceptional service and the necessary local utility contact information during a power outage. Check to see if Provider Power plans with reliable fixed rates are available in your area.

Brought to you by

How Much Electricity Does an Electric Car Use?

People who are thinking about buying an electric car for the first time ever have a lot of questions, which is understandable. One of the most common questions people have is how much electricity an electric car uses. 

Saving money at the gas pump is a top motivator for going with a plug-in electric vehicle (PEV). However, if the electricity consumption of a PEV is significant your monthly bill from the utility provider could be noticeably higher. You can calculate an estimate by using your kilowatt-hour rate and determining roughly how much electricity an electric car will use. Here’s how.

Calculating Electric Car Electricity Use

Gas-powered vehicles have the familiar miles per gallon (MPG) measurement. The MPG tells us how far a vehicle will go on a single gallon of gas (or diesel). 

Measuring fuel efficiency is a little different for electric vehicles. With PEVs, the distance is measured in kWhs per 100 miles. So, in order to calculate how much electricity a PEV will use on a daily/weekly/monthly basis and the cost you’ll need to know:

The rate you pay per kilowatt-hour

The EVs kWhs per 100 miles rating

Now, let’s break it down with an example. Let’s assume that you pay $0.12 per kilowatt-hour. Your electric car requires 30 kWhs to go 100 miles on a fully charged battery. That would mean it costs $3.60 to charge a depleted battery, which works out to be $0.036 per mile or roughly 1/3 kilowatt-hour per mile (3.3 miles per kWh).  

But that’s not the end of the calculation. Now that you know the miles per kilowatt-hour you can determine how much electricity will be used in a month. That depends on how much you drive. 

Let’s assume you’re an average driver that drives 13,500 miles a year. That would work out to be approximately 1,125 miles a month. Going that many miles would require 341 kWhs for an EV that gets 3.3 miles per kWh. 

In this example, the electric car uses 341 kWhs a month for a total cost of $41 in electricity. 

Of course, this is a very straightforward example. In the real world, there are a lot of variables that can affect the electricity usage and rate that is paid.

3 Easy Ways to Reduce Electric Vehicle Electricity Use

How many miles per kilowatt-hour an EV gets is out of the owner’s control, but there are still ways to reduce high usage at home without cutting back on the miles you drive. Below are three simple ways to do just that. 

Charge at Public Stations

The easiest way to dramatically reduce electricity consumption at home is by charging up for free when you’re out and about. Right now there are 31,287 electric charging stations across the U.S. and Canada. Before heading out make sure to check and see if you’ll be stopping in an area that has one.

Charge at Night If You Have a Time-of-Use Electric Plan

People that have a time-of-use plan need to be very mindful of when they charge at home. With this type of electricity plan the kWh rate changes throughout the day depending on demand. Generally, rates are lowest between midnight and 6am. Charging during these hours won’t impact how much electricity is used, but it will make a difference on your monthly bill. 

Use a Smart AC Level 2 Charging Station at Home

If you’re going to invest in an at-home charging station, AC level 2 charging equipment may be the best option. Level 2 equipment comes with smart features like a charging timer and data collection. These features make it easier to charge up when it’s cheaper and get a better idea of how far you’re driving on a given day.

The Department of Energy’s Alternative Fuels Data Center (AFDC) is a great resource for anyone who’s considering an electric car. The center has information on calculating EV electricity use, a charging station locator tool and much more.

Power to help doesn’t exist anymore

You’ll get an electricity plan you can really feel good about!

Brought to you by